Choreographies in the n-vortex Problem
- 作者: Calleja R.C.1, Doedel E.J.2, García-Azpeitia C.3
-
隶属关系:
- IIMAS
- Concordia University
- Facultad de Ciencias
- 期: 卷 23, 编号 5 (2018)
- 页面: 595-612
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/219073
- DOI: https://doi.org/10.1134/S156035471805009X
- ID: 219073
如何引用文章
详细
We consider the equations of motion of n vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of n vortices. We include numerical results for all cases, for various values of n, and we provide key details on the computational approach.
作者简介
Renato Calleja
IIMAS
编辑信件的主要联系方式.
Email: calleja@mym.iimas.unam.mx
墨西哥, Apdo. Postal 20–726, C.P., México, D.F., 01000
Eusebius Doedel
Concordia University
Email: calleja@mym.iimas.unam.mx
加拿大, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, H3G 1M8
Carlos García-Azpeitia
Facultad de Ciencias
Email: calleja@mym.iimas.unam.mx
墨西哥, Circuito Exterior S/N, Ciudad, C.P. 04510, Ciudad Universitaria, CDMX
补充文件
