On Optimal Matching of Gaussian Samples


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let X1, . . .,Xn be independent random variables having as common distribution the standard Gaussian measure μ on ℝ2 and let \( {\mu}_n=\frac{1}{n}\sum \limits_{i=1}^n{\delta}_{X_i} \) be the associated empirical measure. We show that

\( \frac{1}{C}\frac{\log n}{n}\le \) ???? \( \left({\mathrm{W}}_2^2\left({\mu}_n,\mu \right)\right)\le C\frac{{\left(\log n\right)}^2}{n} \)

for some numerical constant C > 0, where W2 is the quadratic Kantorovich metric, and conjecture that the left-hand side provides the correct order. The proof is based on the recent PDE and mass transportation approach developed by L. Ambrosio, F. Stra, and D. Trevisan.

Sobre autores

M. Ledoux

Université de Toulouse–Paul-Sabatier; Institut Universitaire de France

Autor responsável pela correspondência
Email: ledoux@math.univ-toulouse.fr
França, Toulouse; Paris

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019