On Optimal Matching of Gaussian Samples
- 作者: Ledoux M.1,2
-
隶属关系:
- Université de Toulouse–Paul-Sabatier
- Institut Universitaire de France
- 期: 卷 238, 编号 4 (2019)
- 页面: 495-522
- 栏目: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242551
- DOI: https://doi.org/10.1007/s10958-019-04253-6
- ID: 242551
如何引用文章
详细
Let X1, . . .,Xn be independent random variables having as common distribution the standard Gaussian measure μ on ℝ2 and let \( {\mu}_n=\frac{1}{n}\sum \limits_{i=1}^n{\delta}_{X_i} \) be the associated empirical measure. We show that
\( \frac{1}{C}\frac{\log n}{n}\le \) ???? \( \left({\mathrm{W}}_2^2\left({\mu}_n,\mu \right)\right)\le C\frac{{\left(\log n\right)}^2}{n} \)
for some numerical constant C > 0, where W2 is the quadratic Kantorovich metric, and conjecture that the left-hand side provides the correct order. The proof is based on the recent PDE and mass transportation approach developed by L. Ambrosio, F. Stra, and D. Trevisan.
作者简介
M. Ledoux
Université de Toulouse–Paul-Sabatier; Institut Universitaire de France
编辑信件的主要联系方式.
Email: ledoux@math.univ-toulouse.fr
法国, Toulouse; Paris
补充文件
