On Optimal Matching of Gaussian Samples


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let X1, . . .,Xn be independent random variables having as common distribution the standard Gaussian measure μ on ℝ2 and let \( {\mu}_n=\frac{1}{n}\sum \limits_{i=1}^n{\delta}_{X_i} \) be the associated empirical measure. We show that

\( \frac{1}{C}\frac{\log n}{n}\le \) ???? \( \left({\mathrm{W}}_2^2\left({\mu}_n,\mu \right)\right)\le C\frac{{\left(\log n\right)}^2}{n} \)

for some numerical constant C > 0, where W2 is the quadratic Kantorovich metric, and conjecture that the left-hand side provides the correct order. The proof is based on the recent PDE and mass transportation approach developed by L. Ambrosio, F. Stra, and D. Trevisan.

作者简介

M. Ledoux

Université de Toulouse–Paul-Sabatier; Institut Universitaire de France

编辑信件的主要联系方式.
Email: ledoux@math.univ-toulouse.fr
法国, Toulouse; Paris

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019