On Optimal Matching of Gaussian Samples
- Authors: Ledoux M.1,2
-
Affiliations:
- Université de Toulouse–Paul-Sabatier
- Institut Universitaire de France
- Issue: Vol 238, No 4 (2019)
- Pages: 495-522
- Section: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242551
- DOI: https://doi.org/10.1007/s10958-019-04253-6
- ID: 242551
Cite item
Abstract
Let X1, . . .,Xn be independent random variables having as common distribution the standard Gaussian measure μ on ℝ2 and let \( {\mu}_n=\frac{1}{n}\sum \limits_{i=1}^n{\delta}_{X_i} \) be the associated empirical measure. We show that
\( \frac{1}{C}\frac{\log n}{n}\le \) ???? \( \left({\mathrm{W}}_2^2\left({\mu}_n,\mu \right)\right)\le C\frac{{\left(\log n\right)}^2}{n} \)
for some numerical constant C > 0, where W2 is the quadratic Kantorovich metric, and conjecture that the left-hand side provides the correct order. The proof is based on the recent PDE and mass transportation approach developed by L. Ambrosio, F. Stra, and D. Trevisan.
About the authors
M. Ledoux
Université de Toulouse–Paul-Sabatier; Institut Universitaire de France
Author for correspondence.
Email: ledoux@math.univ-toulouse.fr
France, Toulouse; Paris
Supplementary files
