On Optimal Matching of Gaussian Samples
- Авторлар: Ledoux M.1,2
-
Мекемелер:
- Université de Toulouse–Paul-Sabatier
- Institut Universitaire de France
- Шығарылым: Том 238, № 4 (2019)
- Беттер: 495-522
- Бөлім: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242551
- DOI: https://doi.org/10.1007/s10958-019-04253-6
- ID: 242551
Дәйексөз келтіру
Аннотация
Let X1, . . .,Xn be independent random variables having as common distribution the standard Gaussian measure μ on ℝ2 and let \( {\mu}_n=\frac{1}{n}\sum \limits_{i=1}^n{\delta}_{X_i} \) be the associated empirical measure. We show that
\( \frac{1}{C}\frac{\log n}{n}\le \) ???? \( \left({\mathrm{W}}_2^2\left({\mu}_n,\mu \right)\right)\le C\frac{{\left(\log n\right)}^2}{n} \)
for some numerical constant C > 0, where W2 is the quadratic Kantorovich metric, and conjecture that the left-hand side provides the correct order. The proof is based on the recent PDE and mass transportation approach developed by L. Ambrosio, F. Stra, and D. Trevisan.
Авторлар туралы
M. Ledoux
Université de Toulouse–Paul-Sabatier; Institut Universitaire de France
Хат алмасуға жауапты Автор.
Email: ledoux@math.univ-toulouse.fr
Франция, Toulouse; Paris
Қосымша файлдар
