On Optimal Matching of Gaussian Samples


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let X1, . . .,Xn be independent random variables having as common distribution the standard Gaussian measure μ on ℝ2 and let \( {\mu}_n=\frac{1}{n}\sum \limits_{i=1}^n{\delta}_{X_i} \) be the associated empirical measure. We show that

\( \frac{1}{C}\frac{\log n}{n}\le \) ???? \( \left({\mathrm{W}}_2^2\left({\mu}_n,\mu \right)\right)\le C\frac{{\left(\log n\right)}^2}{n} \)

for some numerical constant C > 0, where W2 is the quadratic Kantorovich metric, and conjecture that the left-hand side provides the correct order. The proof is based on the recent PDE and mass transportation approach developed by L. Ambrosio, F. Stra, and D. Trevisan.

About the authors

M. Ledoux

Université de Toulouse–Paul-Sabatier; Institut Universitaire de France

Author for correspondence.
Email: ledoux@math.univ-toulouse.fr
France, Toulouse; Paris

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature