Extensions of the Quadratic Form of the Transverse Laplace Operator


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study the quadratic form of the Laplace operator in 3 dimensions written in spherical coordinates and acting on transverse components of vector-functions. Operators which act on parametrizing functions of one of the transverse components with angular momentum 1 and 2 appear to be fourth-order symmetric operators with deficiency indices (1, 1). We consider self-adjoint extensions of these operators and propose the corresponding extensions for the initial quadratic form. The relevant scalar product for angular momentum 2 differs from the original product in the space of vector-functions, but, nevertheless, it is still local in radial variable. Eigenfunctions of the operator extensions in question can be treated as stable soliton-like solutions of the corresponding dynamical system whose quadratic form is a functional of the potential energy.

Об авторах

T. Bolokhov

St.Petersburg Department of the Steklov Mathematical Institute

Автор, ответственный за переписку.
Email: timur@pdmi.ras.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).