🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Extensions of the Quadratic Form of the Transverse Laplace Operator


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the quadratic form of the Laplace operator in 3 dimensions written in spherical coordinates and acting on transverse components of vector-functions. Operators which act on parametrizing functions of one of the transverse components with angular momentum 1 and 2 appear to be fourth-order symmetric operators with deficiency indices (1, 1). We consider self-adjoint extensions of these operators and propose the corresponding extensions for the initial quadratic form. The relevant scalar product for angular momentum 2 differs from the original product in the space of vector-functions, but, nevertheless, it is still local in radial variable. Eigenfunctions of the operator extensions in question can be treated as stable soliton-like solutions of the corresponding dynamical system whose quadratic form is a functional of the potential energy.

Sobre autores

T. Bolokhov

St.Petersburg Department of the Steklov Mathematical Institute

Autor responsável pela correspondência
Email: timur@pdmi.ras.ru
Rússia, St.Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016