🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Asymptotic Properties of Chebyshev Splines with Fixed Number of Knots


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

V. M. Tikhomirov expressed Kolmogorov widths of the class Wr := Wr[−1, 1] in the space C := C[1, 1] as a norm of special splines: dN(WrC) = ‖xN − r, rC, N ≥ r; these splines were named Chebyshev splines. The function xn,r is a perfect spline of order r with n knots. We study the asymptotic behavior of Chebyshev splines for r→∞and fixed n. We calculate the asymptotics of knots and the C-norm of xn,r and prove that xn,r/xn,r(1) = Tn+r+o(1). As a corollary, we obtain that dn+r(Wr, C)/dr(Wr, C) ~ Anr−n/2 as r→∞.

About the authors

Yu. V. Malykhin

Steklov Mathematical Institute

Author for correspondence.
Email: jura05@yandex.ru
Russian Federation, Moscow

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York