Asymptotic Properties of Chebyshev Splines with Fixed Number of Knots
- Авторы: Malykhin Y.V.1
-
Учреждения:
- Steklov Mathematical Institute
- Выпуск: Том 218, № 5 (2016)
- Страницы: 647-663
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/238271
- DOI: https://doi.org/10.1007/s10958-016-3048-y
- ID: 238271
Цитировать
Аннотация
V. M. Tikhomirov expressed Kolmogorov widths of the class Wr := W∞r[−1, 1] in the space C := C[−1, 1] as a norm of special splines: dN(Wr, C) = ‖xN − r, r‖C, N ≥ r; these splines were named Chebyshev splines. The function xn,r is a perfect spline of order r with n knots. We study the asymptotic behavior of Chebyshev splines for r→∞and fixed n. We calculate the asymptotics of knots and the C-norm of xn,r and prove that xn,r/xn,r(1) = Tn+r+o(1). As a corollary, we obtain that dn+r(Wr, C)/dr(Wr, C) ~ Anr−n/2 as r→∞.
Об авторах
Yu. Malykhin
Steklov Mathematical Institute
Автор, ответственный за переписку.
Email: jura05@yandex.ru
Россия, Moscow
Дополнительные файлы
