The development of probabilistic and statistical methods for identification of noisy transient processes of synchronous machines


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Noisy transient processes (TPs) in the stator windings of synchronous machines (SMs) in experiments on sudden symmetrical short circuits (SCs), field dissipation, voltage recovery, shock excitation, and other issues are especially vulnerable when they are identified by the results of bench tests using the operating standards for testing of synchronous machines. The processing methods of such transient processes according to domestic and foreign standards are overloaded with labor-intensive graphic procedures and calculations using oscillogram data. These methods to date have not made it possible to achieve the desired accuracy of TP processing due to a considerable scatter of the results of their identification. The experiment concerning a sudden SC is the main test for all transient processes, as it is asymmetric and contains the largest number of current components in the SM stator windings. Consequently, this experiment is potentially promising for finding ways to provide a high accuracy and reliability of TP identification. The other above-listed TPs are symmetrical without an asymmetric component, and so their exact identification is provided in a way similar to in the sudden SC experiment. The developed probabilistic and statistical methods (PSMs) of TP identification in many respects solve existing problems. The article presents new possibilities for the development of these methods with effective use of variational series of a random sign with the detected nucleus of effective point samples. These capabilities increase the accuracy and reliability of identification results of these TPs and reduce the labor-intensiveness of studies of a random sign in the investigated range of a TP with a transition component when processing long-term TPs of powerful SMs.

Об авторах

A. Sudakov

Perm National Research Polytechnic University

Автор, ответственный за переписку.
Email: journal-elektrotechnika@mail.ru
Россия, Perm, 614990

E. Chabanov

Perm National Research Polytechnic University

Email: journal-elektrotechnika@mail.ru
Россия, Perm, 614990

I. Kamenskikh

Perm National Research Polytechnic University

Email: journal-elektrotechnika@mail.ru
Россия, Perm, 614990

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».