Element Composition of Iris sibirica L. in In Vitro Culture
- 作者: Tikhomirova L.I.1, Bazarnova N.G.1, Khalavin I.A.2
-
隶属关系:
- Altai State University
- Office of the Federal Service for Veterinary and Phytosanitary Surveillance for Altai Krai and the Republic of Altai
- 期: 卷 44, 编号 7 (2018)
- 页面: 893-898
- 栏目: Low Molecular Weight Compounds
- URL: https://journals.rcsi.science/1068-1620/article/view/229103
- DOI: https://doi.org/10.1134/S1068162018070130
- ID: 229103
如何引用文章
详细
The development of biotechnological methods for producing medicinal plants, preserving the valuable elemental and chemical composition of the group, is one of the most important tasks of the pharmaceutical and food industries. The goal of this study was to investigate the elemental composition of regenerant I. sibirica in comparison with intact plants. We studied the biomass of leaves, rhizomes and roots of plants of regenerant I. sibirica varieties Cambridge and Sterh obtained by microclonal multiplication in Altai State University (Barnaul, Russia). The elemental composition was evaluated using atomic emission spectrometry (ICP-spectrometer Optima 7300 DV, PerkinElmer). The intensity and specificity of accumulation of chemical elements from culture media in organs of I. sibirica plants regenerated by tissue culture was studied. Energetic accumulation elements—K, Mg, Fe, Mn, Zn, Mo Cu, as well as a strong accumulation element Co— were determined based on obtained data. Calcium in the leaves of regenerant plants was defined as an energetic accumulation element, and in the roots and rhizomes as a strong accumulation element. In tissue culture, the two I. sibirica varieties Cambridge and Sterh accumulated chemical elements with the same intensity. Based on spectrometric analysis in I. sibirica biomass 24 chemical elements were identified and a series of preferential accumulation constructed: K > Ca > Mg > Fe > Al > Na > Mn > Zn > Sr > Ba > Ti > Cu > V > Pb > Ni > As > Mo > Co > Sb > Sn > Se > Cd > Ag > Be. Studies have shown that the qualitative composition of the elements found in regenerant and intact I. sibirica plants was identical, while the quantitative content differed significantly. We established that regenerant I. sibirica variety Cambridge were concentrators of manganese (leaves, roots and rhizomes). In the studied samples I. sibirica variety Cambridge, the concentration of heavy metals Pb, Cd and As did not exceed the permissible level for plant-based dietary supplements. The mercury content did not exceed the sensitivity threshold of the device. The possibility of using regenerant and intact I. sibirica plants as sources of various macro- and trace elements was demonstrated. The specificity of the accumulation of studied elements during in vitro cultivation of I. sibirica also should be considered.
作者简介
L. Tikhomirova
Altai State University
编辑信件的主要联系方式.
Email: L-tichomirova@yandex.ru
俄罗斯联邦, Barnaul, 656049
N. Bazarnova
Altai State University
Email: L-tichomirova@yandex.ru
俄罗斯联邦, Barnaul, 656049
I. Khalavin
Office of the Federal Service for Veterinary and Phytosanitary Surveillance for Altai Krai and the Republic of Altai
Email: L-tichomirova@yandex.ru
俄罗斯联邦, Barnaul, 656049
补充文件
