Two-sample Kolmogorov-Smirnov test using a Bayesian nonparametric approach


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, a Bayesian nonparametric approach to the two-sample problem is proposed. Given two samples \(\text{X} = {X_1}, \ldots ,{X_{m1}}\;\mathop {\text~}\limits^{i.i.d.} F\) and \(Y = {Y_1}, \ldots ,{Y_{{m_2}}}\mathop {\text~}\limits^{i.i.d.} G\), with F and G being unknown continuous cumulative distribution functions, we wish to test the null hypothesis H0: F = G. The method is based on computing the Kolmogorov distance between two posterior Dirichlet processes and comparing the results with a reference distance. The parameters of the Dirichlet processes are selected so that any discrepancy between the posterior distance and the reference distance is related to the difference between the two samples. Relevant theoretical properties of the procedure are also developed. Through simulated examples, the approach is compared to the frequentist Kolmogorov–Smirnov test and a Bayesian nonparametric test in which it demonstrates excellent performance.

Авторлар туралы

L. Al-Labadi

Dept. Math. & Comput. Sci.

Хат алмасуға жауапты Автор.
Email: luai.allabadi@utoronto.ca
Канада, Mississauga

M. Zarepour

Dept. Math. and Statist.

Email: luai.allabadi@utoronto.ca
Канада, Ottawa

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2017