Two-sample Kolmogorov-Smirnov test using a Bayesian nonparametric approach


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, a Bayesian nonparametric approach to the two-sample problem is proposed. Given two samples \(\text{X} = {X_1}, \ldots ,{X_{m1}}\;\mathop {\text~}\limits^{i.i.d.} F\) and \(Y = {Y_1}, \ldots ,{Y_{{m_2}}}\mathop {\text~}\limits^{i.i.d.} G\), with F and G being unknown continuous cumulative distribution functions, we wish to test the null hypothesis H0: F = G. The method is based on computing the Kolmogorov distance between two posterior Dirichlet processes and comparing the results with a reference distance. The parameters of the Dirichlet processes are selected so that any discrepancy between the posterior distance and the reference distance is related to the difference between the two samples. Relevant theoretical properties of the procedure are also developed. Through simulated examples, the approach is compared to the frequentist Kolmogorov–Smirnov test and a Bayesian nonparametric test in which it demonstrates excellent performance.

作者简介

L. Al-Labadi

Dept. Math. & Comput. Sci.

编辑信件的主要联系方式.
Email: luai.allabadi@utoronto.ca
加拿大, Mississauga

M. Zarepour

Dept. Math. and Statist.

Email: luai.allabadi@utoronto.ca
加拿大, Ottawa

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017