Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove the quantitative stability of isometries on the first Heisenberg group with sub-Riemannian geometry: every \((1 + \varepsilon )\)-quasi-isometry of the John domain of the Heisenberg group \(\mathbb{H}\) is close to some isometry with the order of closeness \(\sqrt \varepsilon + \varepsilon \) in the uniform norm and with the order of closeness \(\varepsilon \) in the Sobolev norm. An example demonstrating the asymptotic sharpness of the results is given.

作者简介

D. Isangulova

Novosibirsk State University

编辑信件的主要联系方式.
Email: d.isangulova@g.nsu.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019