Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group
- 作者: Isangulova D.V.1
-
隶属关系:
- Novosibirsk State University
- 期: 卷 100, 编号 2 (2019)
- 页面: 480-484
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225726
- DOI: https://doi.org/10.1134/S1064562419050235
- ID: 225726
如何引用文章
详细
We prove the quantitative stability of isometries on the first Heisenberg group with sub-Riemannian geometry: every \((1 + \varepsilon )\)-quasi-isometry of the John domain of the Heisenberg group \(\mathbb{H}\) is close to some isometry with the order of closeness \(\sqrt \varepsilon + \varepsilon \) in the uniform norm and with the order of closeness \(\varepsilon \) in the Sobolev norm. An example demonstrating the asymptotic sharpness of the results is given.
作者简介
D. Isangulova
Novosibirsk State University
编辑信件的主要联系方式.
Email: d.isangulova@g.nsu.ru
俄罗斯联邦, Novosibirsk, 630090
补充文件
