Sharp Estimates for Geometric Rigidity of Isometries on the First Heisenberg Group
- Авторлар: Isangulova D.V.1
-
Мекемелер:
- Novosibirsk State University
- Шығарылым: Том 100, № 2 (2019)
- Беттер: 480-484
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225726
- DOI: https://doi.org/10.1134/S1064562419050235
- ID: 225726
Дәйексөз келтіру
Аннотация
We prove the quantitative stability of isometries on the first Heisenberg group with sub-Riemannian geometry: every \((1 + \varepsilon )\)-quasi-isometry of the John domain of the Heisenberg group \(\mathbb{H}\) is close to some isometry with the order of closeness \(\sqrt \varepsilon + \varepsilon \) in the uniform norm and with the order of closeness \(\varepsilon \) in the Sobolev norm. An example demonstrating the asymptotic sharpness of the results is given.
Авторлар туралы
D. Isangulova
Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: d.isangulova@g.nsu.ru
Ресей, Novosibirsk, 630090
Қосымша файлдар
