On the Complexity of Some Problems of Searching for a Family of Disjoint Clusters


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Two consimilar problems of searching for a family of disjoint subsets (clusters) in a finite set of points of Euclidean space are considered. In these problems, the task is to maximize the minimum cluster size so that the value of each intercluster quadratic variation does not exceed a given fraction (constant) of the total quadratic variation of the points of the input set with respect to its centroid. Both problems are proved to be NP-hard even on a line.

作者简介

A. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences; Novosibirsk State University

编辑信件的主要联系方式.
Email: kelm@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

A. Pyatkin

Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences; Novosibirsk State University

编辑信件的主要联系方式.
Email: artem@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

V. Khandeev

Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences; Novosibirsk State University

编辑信件的主要联系方式.
Email: khandeev@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019