On the Complexity of Some Problems of Searching for a Family of Disjoint Clusters
- Autores: Kel’manov A.V.1,2, Pyatkin A.V.1,2, Khandeev V.I.1,2
-
Afiliações:
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Edição: Volume 99, Nº 1 (2019)
- Páginas: 52-56
- Seção: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225620
- DOI: https://doi.org/10.1134/S1064562419010162
- ID: 225620
Citar
Resumo
Two consimilar problems of searching for a family of disjoint subsets (clusters) in a finite set of points of Euclidean space are considered. In these problems, the task is to maximize the minimum cluster size so that the value of each intercluster quadratic variation does not exceed a given fraction (constant) of the total quadratic variation of the points of the input set with respect to its centroid. Both problems are proved to be NP-hard even on a line.
Sobre autores
A. Kel’manov
Sobolev Institute of Mathematics, Siberian Branch,Russian Academy of Sciences; Novosibirsk State University
Autor responsável pela correspondência
Email: kelm@math.nsc.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090
A. Pyatkin
Sobolev Institute of Mathematics, Siberian Branch,Russian Academy of Sciences; Novosibirsk State University
Autor responsável pela correspondência
Email: artem@math.nsc.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090
V. Khandeev
Sobolev Institute of Mathematics, Siberian Branch,Russian Academy of Sciences; Novosibirsk State University
Autor responsável pela correspondência
Email: khandeev@math.nsc.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090
Arquivos suplementares
