On the Closeness of Solutions of Unperturbed and Hyperbolized Heat Equations with Discontinuous Initial Data
- 作者: Moiseev T.E.1, Myshetskaya E.E.2, Tishkin V.F.2
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics
- Keldysh Institute of Applied Mathematics
- 期: 卷 98, 编号 1 (2018)
- 页面: 391-395
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225542
- DOI: https://doi.org/10.1134/S1064562418050277
- ID: 225542
如何引用文章
详细
The influence exerted by the second time derivative with a small parameter added to the heat equation in the case of discontinuous periodic initial data is investigated. It is shown that, except for the initial instants of time, the error of hyperbolization vanishes as the square root of the addition.
作者简介
T. Moiseev
Faculty of Computational Mathematics and Cybernetics
编辑信件的主要联系方式.
Email: tsmoiseev@mail.ru
俄罗斯联邦, Moscow, 119991
E. Myshetskaya
Keldysh Institute of Applied Mathematics
Email: tsmoiseev@mail.ru
俄罗斯联邦, Moscow, 125047
V. Tishkin
Keldysh Institute of Applied Mathematics
Email: tsmoiseev@mail.ru
俄罗斯联邦, Moscow, 125047
补充文件
