On the Closeness of Solutions of Unperturbed and Hyperbolized Heat Equations with Discontinuous Initial Data
- Autores: Moiseev T.E.1, Myshetskaya E.E.2, Tishkin V.F.2
-
Afiliações:
- Faculty of Computational Mathematics and Cybernetics
- Keldysh Institute of Applied Mathematics
- Edição: Volume 98, Nº 1 (2018)
- Páginas: 391-395
- Seção: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225542
- DOI: https://doi.org/10.1134/S1064562418050277
- ID: 225542
Citar
Resumo
The influence exerted by the second time derivative with a small parameter added to the heat equation in the case of discontinuous periodic initial data is investigated. It is shown that, except for the initial instants of time, the error of hyperbolization vanishes as the square root of the addition.
Sobre autores
T. Moiseev
Faculty of Computational Mathematics and Cybernetics
Autor responsável pela correspondência
Email: tsmoiseev@mail.ru
Rússia, Moscow, 119991
E. Myshetskaya
Keldysh Institute of Applied Mathematics
Email: tsmoiseev@mail.ru
Rússia, Moscow, 125047
V. Tishkin
Keldysh Institute of Applied Mathematics
Email: tsmoiseev@mail.ru
Rússia, Moscow, 125047
Arquivos suplementares
