On the Closeness of Solutions of Unperturbed and Hyperbolized Heat Equations with Discontinuous Initial Data
- Авторлар: Moiseev T.E.1, Myshetskaya E.E.2, Tishkin V.F.2
-
Мекемелер:
- Faculty of Computational Mathematics and Cybernetics
- Keldysh Institute of Applied Mathematics
- Шығарылым: Том 98, № 1 (2018)
- Беттер: 391-395
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225542
- DOI: https://doi.org/10.1134/S1064562418050277
- ID: 225542
Дәйексөз келтіру
Аннотация
The influence exerted by the second time derivative with a small parameter added to the heat equation in the case of discontinuous periodic initial data is investigated. It is shown that, except for the initial instants of time, the error of hyperbolization vanishes as the square root of the addition.
Авторлар туралы
T. Moiseev
Faculty of Computational Mathematics and Cybernetics
Хат алмасуға жауапты Автор.
Email: tsmoiseev@mail.ru
Ресей, Moscow, 119991
E. Myshetskaya
Keldysh Institute of Applied Mathematics
Email: tsmoiseev@mail.ru
Ресей, Moscow, 125047
V. Tishkin
Keldysh Institute of Applied Mathematics
Email: tsmoiseev@mail.ru
Ресей, Moscow, 125047
Қосымша файлдар
