On the Closeness of Solutions of Unperturbed and Hyperbolized Heat Equations with Discontinuous Initial Data
- Авторы: Moiseev T.E.1, Myshetskaya E.E.2, Tishkin V.F.2
-
Учреждения:
- Faculty of Computational Mathematics and Cybernetics
- Keldysh Institute of Applied Mathematics
- Выпуск: Том 98, № 1 (2018)
- Страницы: 391-395
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225542
- DOI: https://doi.org/10.1134/S1064562418050277
- ID: 225542
Цитировать
Аннотация
The influence exerted by the second time derivative with a small parameter added to the heat equation in the case of discontinuous periodic initial data is investigated. It is shown that, except for the initial instants of time, the error of hyperbolization vanishes as the square root of the addition.
Об авторах
T. Moiseev
Faculty of Computational Mathematics and Cybernetics
Автор, ответственный за переписку.
Email: tsmoiseev@mail.ru
Россия, Moscow, 119991
E. Myshetskaya
Keldysh Institute of Applied Mathematics
Email: tsmoiseev@mail.ru
Россия, Moscow, 125047
V. Tishkin
Keldysh Institute of Applied Mathematics
Email: tsmoiseev@mail.ru
Россия, Moscow, 125047
Дополнительные файлы
