Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence
- Autores: Zyuzina N.A.1,2, Kovyrkina O.A.1, Ostapenko V.V.1
-
Afiliações:
- Lavrent’ev Institute of Hydrodynamics, Siberian Branch
- Novosibirsk State University
- Edição: Volume 98, Nº 2 (2018)
- Páginas: 506-510
- Seção: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225568
- DOI: https://doi.org/10.1134/S1064562418060315
- ID: 225568
Citar
Resumo
An explicit combined shock-capturing finite-difference scheme is constructed that localizes shock fronts with high accuracy and simultaneously preserves the high order of convergence in all domains where the computed weak solutions are smooth. In this scheme, Rusanov’s explicit nonmonotone scheme of the third order is used as a basis one, while the internal scheme is based on the second-order monotone CABARET. The advantages of the new scheme as compared with the WENO scheme of the fifth order in space and third order in time are demonstrated in test computations.
Sobre autores
N. Zyuzina
Lavrent’ev Institute of Hydrodynamics, Siberian Branch; Novosibirsk State University
Email: ostapenko_vv@ngs.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090
O. Kovyrkina
Lavrent’ev Institute of Hydrodynamics, Siberian Branch
Email: ostapenko_vv@ngs.ru
Rússia, Novosibirsk, 630090
V. Ostapenko
Lavrent’ev Institute of Hydrodynamics, Siberian Branch
Autor responsável pela correspondência
Email: ostapenko_vv@ngs.ru
Rússia, Novosibirsk, 630090
Arquivos suplementares
