Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An explicit combined shock-capturing finite-difference scheme is constructed that localizes shock fronts with high accuracy and simultaneously preserves the high order of convergence in all domains where the computed weak solutions are smooth. In this scheme, Rusanov’s explicit nonmonotone scheme of the third order is used as a basis one, while the internal scheme is based on the second-order monotone CABARET. The advantages of the new scheme as compared with the WENO scheme of the fifth order in space and third order in time are demonstrated in test computations.

作者简介

N. Zyuzina

Lavrent’ev Institute of Hydrodynamics, Siberian Branch; Novosibirsk State University

Email: ostapenko_vv@ngs.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

O. Kovyrkina

Lavrent’ev Institute of Hydrodynamics, Siberian Branch

Email: ostapenko_vv@ngs.ru
俄罗斯联邦, Novosibirsk, 630090

V. Ostapenko

Lavrent’ev Institute of Hydrodynamics, Siberian Branch

编辑信件的主要联系方式.
Email: ostapenko_vv@ngs.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018