Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence
- 作者: Zyuzina N.A.1,2, Kovyrkina O.A.1, Ostapenko V.V.1
-
隶属关系:
- Lavrent’ev Institute of Hydrodynamics, Siberian Branch
- Novosibirsk State University
- 期: 卷 98, 编号 2 (2018)
- 页面: 506-510
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225568
- DOI: https://doi.org/10.1134/S1064562418060315
- ID: 225568
如何引用文章
详细
An explicit combined shock-capturing finite-difference scheme is constructed that localizes shock fronts with high accuracy and simultaneously preserves the high order of convergence in all domains where the computed weak solutions are smooth. In this scheme, Rusanov’s explicit nonmonotone scheme of the third order is used as a basis one, while the internal scheme is based on the second-order monotone CABARET. The advantages of the new scheme as compared with the WENO scheme of the fifth order in space and third order in time are demonstrated in test computations.
作者简介
N. Zyuzina
Lavrent’ev Institute of Hydrodynamics, Siberian Branch; Novosibirsk State University
Email: ostapenko_vv@ngs.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
O. Kovyrkina
Lavrent’ev Institute of Hydrodynamics, Siberian Branch
Email: ostapenko_vv@ngs.ru
俄罗斯联邦, Novosibirsk, 630090
V. Ostapenko
Lavrent’ev Institute of Hydrodynamics, Siberian Branch
编辑信件的主要联系方式.
Email: ostapenko_vv@ngs.ru
俄罗斯联邦, Novosibirsk, 630090
补充文件
