Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence
- Авторлар: Zyuzina N.A.1,2, Kovyrkina O.A.1, Ostapenko V.V.1
-
Мекемелер:
- Lavrent’ev Institute of Hydrodynamics, Siberian Branch
- Novosibirsk State University
- Шығарылым: Том 98, № 2 (2018)
- Беттер: 506-510
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225568
- DOI: https://doi.org/10.1134/S1064562418060315
- ID: 225568
Дәйексөз келтіру
Аннотация
An explicit combined shock-capturing finite-difference scheme is constructed that localizes shock fronts with high accuracy and simultaneously preserves the high order of convergence in all domains where the computed weak solutions are smooth. In this scheme, Rusanov’s explicit nonmonotone scheme of the third order is used as a basis one, while the internal scheme is based on the second-order monotone CABARET. The advantages of the new scheme as compared with the WENO scheme of the fifth order in space and third order in time are demonstrated in test computations.
Авторлар туралы
N. Zyuzina
Lavrent’ev Institute of Hydrodynamics, Siberian Branch; Novosibirsk State University
Email: ostapenko_vv@ngs.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090
O. Kovyrkina
Lavrent’ev Institute of Hydrodynamics, Siberian Branch
Email: ostapenko_vv@ngs.ru
Ресей, Novosibirsk, 630090
V. Ostapenko
Lavrent’ev Institute of Hydrodynamics, Siberian Branch
Хат алмасуға жауапты Автор.
Email: ostapenko_vv@ngs.ru
Ресей, Novosibirsk, 630090
Қосымша файлдар
