Properties of Extrema of Estimates for Middle Derivatives of Odd Order in Sobolev Classes
- 作者: Garmanova T.A.1, Sheipak I.A.1
-
隶属关系:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
- 期: 卷 100, 编号 1 (2019)
- 页面: 367-371
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225697
- DOI: https://doi.org/10.1134/S1064562419040148
- ID: 225697
如何引用文章
详细
The embedding constants for the Sobolev spaces \(\overset{\circ} {W_{2}^{n}} \)[0; 1] ↪ \(\mathop {W_{\infty }^{k}}\limits^{\circ} \)[0; 1] (\(0 \leqslant k \leqslant n - 1\)) are considered. The properties of the functions \({{A}_{{n,k}}}(x)\) arising in the inequalities \({\text{|}}{{f}^{k}}(x){\text{|}} \leqslant A_{{n,k}}^{{}}(x){\text{||}}f{\text{|}}{{{\text{|}}}_{{\mathop {W_{2}^{n}}\limits^{\circ}[0;1]} }}\) are studied. The extremum points of \({{A}_{{n,k}}}\) are calculated for k = 3, 5 and all admissible n. The global maximum of these functions is found, and the exact embedding constants are calculated.
作者简介
T. Garmanova
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
Email: iasheip@yandex.ru
俄罗斯联邦, Moscow, 119991
I. Sheipak
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: iasheip@yandex.ru
俄罗斯联邦, Moscow, 119991
补充文件
