Properties of Extrema of Estimates for Middle Derivatives of Odd Order in Sobolev Classes
- Авторы: Garmanova T.A.1, Sheipak I.A.1
-
Учреждения:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
- Выпуск: Том 100, № 1 (2019)
- Страницы: 367-371
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225697
- DOI: https://doi.org/10.1134/S1064562419040148
- ID: 225697
Цитировать
Аннотация
The embedding constants for the Sobolev spaces \(\overset{\circ} {W_{2}^{n}} \)[0; 1] ↪ \(\mathop {W_{\infty }^{k}}\limits^{\circ} \)[0; 1] (\(0 \leqslant k \leqslant n - 1\)) are considered. The properties of the functions \({{A}_{{n,k}}}(x)\) arising in the inequalities \({\text{|}}{{f}^{k}}(x){\text{|}} \leqslant A_{{n,k}}^{{}}(x){\text{||}}f{\text{|}}{{{\text{|}}}_{{\mathop {W_{2}^{n}}\limits^{\circ}[0;1]} }}\) are studied. The extremum points of \({{A}_{{n,k}}}\) are calculated for k = 3, 5 and all admissible n. The global maximum of these functions is found, and the exact embedding constants are calculated.
Об авторах
T. Garmanova
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
Email: iasheip@yandex.ru
Россия, Moscow, 119991
I. Sheipak
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: iasheip@yandex.ru
Россия, Moscow, 119991
Дополнительные файлы
