Properties of Extrema of Estimates for Middle Derivatives of Odd Order in Sobolev Classes


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The embedding constants for the Sobolev spaces \(\overset{\circ} {W_{2}^{n}} \)[0; 1] ↪ \(\mathop {W_{\infty }^{k}}\limits^{\circ} \)[0; 1] (\(0 \leqslant k \leqslant n - 1\)) are considered. The properties of the functions \({{A}_{{n,k}}}(x)\) arising in the inequalities \({\text{|}}{{f}^{k}}(x){\text{|}} \leqslant A_{{n,k}}^{{}}(x){\text{||}}f{\text{|}}{{{\text{|}}}_{{\mathop {W_{2}^{n}}\limits^{\circ}[0;1]} }}\) are studied. The extremum points of \({{A}_{{n,k}}}\) are calculated for k = 3, 5 and all admissible n. The global maximum of these functions is found, and the exact embedding constants are calculated.

Sobre autores

T. Garmanova

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University

Email: iasheip@yandex.ru
Rússia, Moscow, 119991

I. Sheipak

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: iasheip@yandex.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019