Properties of Extrema of Estimates for Middle Derivatives of Odd Order in Sobolev Classes
- Autores: Garmanova T.A.1, Sheipak I.A.1
-
Afiliações:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
- Edição: Volume 100, Nº 1 (2019)
- Páginas: 367-371
- Seção: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225697
- DOI: https://doi.org/10.1134/S1064562419040148
- ID: 225697
Citar
Resumo
The embedding constants for the Sobolev spaces \(\overset{\circ} {W_{2}^{n}} \)[0; 1] ↪ \(\mathop {W_{\infty }^{k}}\limits^{\circ} \)[0; 1] (\(0 \leqslant k \leqslant n - 1\)) are considered. The properties of the functions \({{A}_{{n,k}}}(x)\) arising in the inequalities \({\text{|}}{{f}^{k}}(x){\text{|}} \leqslant A_{{n,k}}^{{}}(x){\text{||}}f{\text{|}}{{{\text{|}}}_{{\mathop {W_{2}^{n}}\limits^{\circ}[0;1]} }}\) are studied. The extremum points of \({{A}_{{n,k}}}\) are calculated for k = 3, 5 and all admissible n. The global maximum of these functions is found, and the exact embedding constants are calculated.
Sobre autores
T. Garmanova
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
Email: iasheip@yandex.ru
Rússia, Moscow, 119991
I. Sheipak
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
Autor responsável pela correspondência
Email: iasheip@yandex.ru
Rússia, Moscow, 119991
Arquivos suplementares
