Spectral Deformation in a Problem of Singular Perturbation Theory


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Quasi-classical asymptotic behavior of the spectrum of a non-self-adjoint Sturm–Liouville problem is studied in the case of a one-parameter family of potentials being third-degree polynomials. For this problem, the phase-integral method is used to derive quantization conditions characterizing the asymptotic distribution of the eigenvalues and their concentration near edges of the limit spectral complex. Topologically different types of limit configurations are described, and critical values of the deformation parameter corresponding to type changes are specified.

Sobre autores

S. Stepin

Faculty of Mechanics and Mathematics,
Moscow State University

Autor responsável pela correspondência
Email: ststepin@mail.ru
Rússia, Moscow, 119991

V. Fufaev

Faculty of Mechanics and Mathematics,
Moscow State University

Email: ststepin@mail.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019