Spectral Deformation in a Problem of Singular Perturbation Theory


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Quasi-classical asymptotic behavior of the spectrum of a non-self-adjoint Sturm–Liouville problem is studied in the case of a one-parameter family of potentials being third-degree polynomials. For this problem, the phase-integral method is used to derive quantization conditions characterizing the asymptotic distribution of the eigenvalues and their concentration near edges of the limit spectral complex. Topologically different types of limit configurations are described, and critical values of the deformation parameter corresponding to type changes are specified.

作者简介

S. Stepin

Faculty of Mechanics and Mathematics,
Moscow State University

编辑信件的主要联系方式.
Email: ststepin@mail.ru
俄罗斯联邦, Moscow, 119991

V. Fufaev

Faculty of Mechanics and Mathematics,
Moscow State University

Email: ststepin@mail.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019