Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
- Autores: Mednykh A.D.1,2, Mednykh I.A.1,2
-
Afiliações:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- Edição: Volume 97, Nº 2 (2018)
- Páginas: 147-151
- Seção: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225479
- DOI: https://doi.org/10.1134/S1064562418020138
- ID: 225479
Citar
Resumo
Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials.
Sobre autores
A. Mednykh
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Autor responsável pela correspondência
Email: smedn@mail.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090
I. Mednykh
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: smedn@mail.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090
Arquivos suplementares
