Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials.

Sobre autores

A. Mednykh

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Autor responsável pela correspondência
Email: smedn@mail.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

I. Mednykh

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: smedn@mail.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018