Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
- Авторлар: Mednykh A.D.1,2, Mednykh I.A.1,2
-
Мекемелер:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- Шығарылым: Том 97, № 2 (2018)
- Беттер: 147-151
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225479
- DOI: https://doi.org/10.1134/S1064562418020138
- ID: 225479
Дәйексөз келтіру
Аннотация
Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials.
Авторлар туралы
A. Mednykh
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: smedn@mail.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090
I. Mednykh
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: smedn@mail.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090
Қосымша файлдар
