Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials.

作者简介

A. Mednykh

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

编辑信件的主要联系方式.
Email: smedn@mail.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

I. Mednykh

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: smedn@mail.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018