Asymptotics and Arithmetical Properties of Complexity for Circulant Graphs
- 作者: Mednykh A.D.1,2, Mednykh I.A.1,2
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- 期: 卷 97, 编号 2 (2018)
- 页面: 147-151
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225479
- DOI: https://doi.org/10.1134/S1064562418020138
- ID: 225479
如何引用文章
详细
Abstract—We study analytical and arithmetical properties of the complexity function for infinite families of circulant Cn(s1, s2,…, sk) C2n(s1, s2,…, sk, n). Exact analytical formulas for the complexity functions of these families are derived, and their asymptotics are found. As a consequence, we show that the thermodynamic limit of these families of graphs coincides with the small Mahler measure of the accompanying Laurent polynomials.
作者简介
A. Mednykh
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
编辑信件的主要联系方式.
Email: smedn@mail.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
I. Mednykh
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: smedn@mail.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
补充文件
