Kantorovich–Wright integral and representation of quasi-Banach lattices


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The purpose of this paper is two-fold: first, to outline a purely order-based integral of the type of the Kantorovich–Wright integral of scalar functions with respect to a vector measure defined on a δ-ring and taking values in a Kσ-space (that is, a Dedekind σ-complete vector lattice) and, secondly, prove new theorems on the representation of Dedekind complete vector lattices and quasi-Banach lattices in the form of lattices of functions integrable or “weakly” integrable with respect to an appropriate vector measure. In particular, it is shown that, in studying quasi-Banach lattices, when the duality method does not apply, the Kantorovich–Wright integral is more flexible than the Bartle–Dunford–Schwartz integral.

Авторлар туралы

A. Kusraev

Vladikavkaz Scientific Center

Хат алмасуға жауапты Автор.
Email: kusraev@smath.ru
Ресей, Vladikavkaz, 362008

B. Tasoev

Southern Mathematical Institute, Vladikavkaz Scientific Center

Email: kusraev@smath.ru
Ресей, Vladikavkaz, 362027

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017