Kantorovich–Wright integral and representation of quasi-Banach lattices


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The purpose of this paper is two-fold: first, to outline a purely order-based integral of the type of the Kantorovich–Wright integral of scalar functions with respect to a vector measure defined on a δ-ring and taking values in a Kσ-space (that is, a Dedekind σ-complete vector lattice) and, secondly, prove new theorems on the representation of Dedekind complete vector lattices and quasi-Banach lattices in the form of lattices of functions integrable or “weakly” integrable with respect to an appropriate vector measure. In particular, it is shown that, in studying quasi-Banach lattices, when the duality method does not apply, the Kantorovich–Wright integral is more flexible than the Bartle–Dunford–Schwartz integral.

Sobre autores

A. Kusraev

Vladikavkaz Scientific Center

Autor responsável pela correspondência
Email: kusraev@smath.ru
Rússia, Vladikavkaz, 362008

B. Tasoev

Southern Mathematical Institute, Vladikavkaz Scientific Center

Email: kusraev@smath.ru
Rússia, Vladikavkaz, 362027

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017