Kantorovich–Wright integral and representation of quasi-Banach lattices
- 作者: Kusraev A.G.1, Tasoev B.B.2
-
隶属关系:
- Vladikavkaz Scientific Center
- Southern Mathematical Institute, Vladikavkaz Scientific Center
- 期: 卷 95, 编号 3 (2017)
- 页面: 207-210
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225018
- DOI: https://doi.org/10.1134/S1064562417030036
- ID: 225018
如何引用文章
详细
The purpose of this paper is two-fold: first, to outline a purely order-based integral of the type of the Kantorovich–Wright integral of scalar functions with respect to a vector measure defined on a δ-ring and taking values in a Kσ-space (that is, a Dedekind σ-complete vector lattice) and, secondly, prove new theorems on the representation of Dedekind complete vector lattices and quasi-Banach lattices in the form of lattices of functions integrable or “weakly” integrable with respect to an appropriate vector measure. In particular, it is shown that, in studying quasi-Banach lattices, when the duality method does not apply, the Kantorovich–Wright integral is more flexible than the Bartle–Dunford–Schwartz integral.
作者简介
A. Kusraev
Vladikavkaz Scientific Center
编辑信件的主要联系方式.
Email: kusraev@smath.ru
俄罗斯联邦, Vladikavkaz, 362008
B. Tasoev
Southern Mathematical Institute, Vladikavkaz Scientific Center
Email: kusraev@smath.ru
俄罗斯联邦, Vladikavkaz, 362027
补充文件
