Kantorovich–Wright integral and representation of quasi-Banach lattices


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The purpose of this paper is two-fold: first, to outline a purely order-based integral of the type of the Kantorovich–Wright integral of scalar functions with respect to a vector measure defined on a δ-ring and taking values in a Kσ-space (that is, a Dedekind σ-complete vector lattice) and, secondly, prove new theorems on the representation of Dedekind complete vector lattices and quasi-Banach lattices in the form of lattices of functions integrable or “weakly” integrable with respect to an appropriate vector measure. In particular, it is shown that, in studying quasi-Banach lattices, when the duality method does not apply, the Kantorovich–Wright integral is more flexible than the Bartle–Dunford–Schwartz integral.

作者简介

A. Kusraev

Vladikavkaz Scientific Center

编辑信件的主要联系方式.
Email: kusraev@smath.ru
俄罗斯联邦, Vladikavkaz, 362008

B. Tasoev

Southern Mathematical Institute, Vladikavkaz Scientific Center

Email: kusraev@smath.ru
俄罗斯联邦, Vladikavkaz, 362027

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017