Complexity of Discrete Seifert Foliations over a Graph


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the complexity of an infinite family of graphs \({{H}_{n}} = {{H}_{n}}({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}})\) that are discrete Seifert foliations over a given graph H on m vertices with fibers \({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}}.\) Each fiber Gi = \({{C}_{n}}({{s}_{{i,1}}},{{s}_{{i,2}}},...,{{s}_{{i,{{k}_{i}}}}})\) of this foliation is a circulant graph on n vertices with jumps \({{s}_{{i,1}}},{{s}_{{i,2}}}, \ldots ,{{s}_{{i,{{k}_{i}}}}}.\) The family of discrete Seifert foliations is sufficiently large. It includes the generalized Petersen graphs, I-graphs, Y-graphs, H-graphs, sandwiches of circulant graphs, discrete torus graphs, and other graphs. A closed-form formula for the number \(\tau (n)\) of spanning trees in Hn is obtained in terms of Chebyshev polynomials, some analytical and arithmetic properties of this function are investigated, and its asymptotics as \(n \to \infty \) is determined.

Авторлар туралы

Young Kwon

Yeungnam University

Email: smedn@mail.ru
Корей Республикасы, Gyeongsan, 38541

A. Mednykh

Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: smedn@mail.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

I. Mednykh

Yeungnam University; Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences

Email: smedn@mail.ru
Корей Республикасы, Gyeongsan, 38541; Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019