Complexity of Discrete Seifert Foliations over a Graph
- Авторлар: Kwon Y.S.1, Mednykh A.D.2,3, Mednykh I.A.1,2
-
Мекемелер:
- Yeungnam University
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Шығарылым: Том 99, № 3 (2019)
- Беттер: 286-289
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225678
- DOI: https://doi.org/10.1134/S1064562419030141
- ID: 225678
Дәйексөз келтіру
Аннотация
We study the complexity of an infinite family of graphs \({{H}_{n}} = {{H}_{n}}({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}})\) that are discrete Seifert foliations over a given graph H on m vertices with fibers \({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}}.\) Each fiber Gi = \({{C}_{n}}({{s}_{{i,1}}},{{s}_{{i,2}}},...,{{s}_{{i,{{k}_{i}}}}})\) of this foliation is a circulant graph on n vertices with jumps \({{s}_{{i,1}}},{{s}_{{i,2}}}, \ldots ,{{s}_{{i,{{k}_{i}}}}}.\) The family of discrete Seifert foliations is sufficiently large. It includes the generalized Petersen graphs, I-graphs, Y-graphs, H-graphs, sandwiches of circulant graphs, discrete torus graphs, and other graphs. A closed-form formula for the number \(\tau (n)\) of spanning trees in Hn is obtained in terms of Chebyshev polynomials, some analytical and arithmetic properties of this function are investigated, and its asymptotics as \(n \to \infty \) is determined.
Авторлар туралы
Young Kwon
Yeungnam University
Email: smedn@mail.ru
Корей Республикасы, Gyeongsan, 38541
A. Mednykh
Sobolev Institute of Mathematics, Siberian Branch,Russian Academy of Sciences; Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: smedn@mail.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090
I. Mednykh
Yeungnam University; Sobolev Institute of Mathematics, Siberian Branch,Russian Academy of Sciences
Email: smedn@mail.ru
Корей Республикасы, Gyeongsan, 38541; Novosibirsk, 630090
Қосымша файлдар
