Complexity of Discrete Seifert Foliations over a Graph


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the complexity of an infinite family of graphs \({{H}_{n}} = {{H}_{n}}({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}})\) that are discrete Seifert foliations over a given graph H on m vertices with fibers \({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}}.\) Each fiber Gi = \({{C}_{n}}({{s}_{{i,1}}},{{s}_{{i,2}}},...,{{s}_{{i,{{k}_{i}}}}})\) of this foliation is a circulant graph on n vertices with jumps \({{s}_{{i,1}}},{{s}_{{i,2}}}, \ldots ,{{s}_{{i,{{k}_{i}}}}}.\) The family of discrete Seifert foliations is sufficiently large. It includes the generalized Petersen graphs, I-graphs, Y-graphs, H-graphs, sandwiches of circulant graphs, discrete torus graphs, and other graphs. A closed-form formula for the number \(\tau (n)\) of spanning trees in Hn is obtained in terms of Chebyshev polynomials, some analytical and arithmetic properties of this function are investigated, and its asymptotics as \(n \to \infty \) is determined.

Sobre autores

Young Kwon

Yeungnam University

Email: smedn@mail.ru
República da Coreia, Gyeongsan, 38541

A. Mednykh

Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences; Novosibirsk State University

Autor responsável pela correspondência
Email: smedn@mail.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

I. Mednykh

Yeungnam University; Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences

Email: smedn@mail.ru
República da Coreia, Gyeongsan, 38541; Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019