Complexity of Discrete Seifert Foliations over a Graph


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the complexity of an infinite family of graphs \({{H}_{n}} = {{H}_{n}}({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}})\) that are discrete Seifert foliations over a given graph H on m vertices with fibers \({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}}.\) Each fiber Gi = \({{C}_{n}}({{s}_{{i,1}}},{{s}_{{i,2}}},...,{{s}_{{i,{{k}_{i}}}}})\) of this foliation is a circulant graph on n vertices with jumps \({{s}_{{i,1}}},{{s}_{{i,2}}}, \ldots ,{{s}_{{i,{{k}_{i}}}}}.\) The family of discrete Seifert foliations is sufficiently large. It includes the generalized Petersen graphs, I-graphs, Y-graphs, H-graphs, sandwiches of circulant graphs, discrete torus graphs, and other graphs. A closed-form formula for the number \(\tau (n)\) of spanning trees in Hn is obtained in terms of Chebyshev polynomials, some analytical and arithmetic properties of this function are investigated, and its asymptotics as \(n \to \infty \) is determined.

作者简介

Young Kwon

Yeungnam University

Email: smedn@mail.ru
韩国, Gyeongsan, 38541

A. Mednykh

Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences; Novosibirsk State University

编辑信件的主要联系方式.
Email: smedn@mail.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

I. Mednykh

Yeungnam University; Sobolev Institute of Mathematics, Siberian Branch,
Russian Academy of Sciences

Email: smedn@mail.ru
韩国, Gyeongsan, 38541; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019