Complexity of Discrete Seifert Foliations over a Graph
- 作者: Kwon Y.S.1, Mednykh A.D.2,3, Mednykh I.A.1,2
-
隶属关系:
- Yeungnam University
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- 期: 卷 99, 编号 3 (2019)
- 页面: 286-289
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225678
- DOI: https://doi.org/10.1134/S1064562419030141
- ID: 225678
如何引用文章
详细
We study the complexity of an infinite family of graphs \({{H}_{n}} = {{H}_{n}}({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}})\) that are discrete Seifert foliations over a given graph H on m vertices with fibers \({{G}_{1}},{{G}_{2}}, \ldots ,{{G}_{m}}.\) Each fiber Gi = \({{C}_{n}}({{s}_{{i,1}}},{{s}_{{i,2}}},...,{{s}_{{i,{{k}_{i}}}}})\) of this foliation is a circulant graph on n vertices with jumps \({{s}_{{i,1}}},{{s}_{{i,2}}}, \ldots ,{{s}_{{i,{{k}_{i}}}}}.\) The family of discrete Seifert foliations is sufficiently large. It includes the generalized Petersen graphs, I-graphs, Y-graphs, H-graphs, sandwiches of circulant graphs, discrete torus graphs, and other graphs. A closed-form formula for the number \(\tau (n)\) of spanning trees in Hn is obtained in terms of Chebyshev polynomials, some analytical and arithmetic properties of this function are investigated, and its asymptotics as \(n \to \infty \) is determined.
作者简介
Young Kwon
Yeungnam University
Email: smedn@mail.ru
韩国, Gyeongsan, 38541
A. Mednykh
Sobolev Institute of Mathematics, Siberian Branch,Russian Academy of Sciences; Novosibirsk State University
编辑信件的主要联系方式.
Email: smedn@mail.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
I. Mednykh
Yeungnam University; Sobolev Institute of Mathematics, Siberian Branch,Russian Academy of Sciences
Email: smedn@mail.ru
韩国, Gyeongsan, 38541; Novosibirsk, 630090
补充文件
