🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On Heyde’s Theorem for Probability Distributions on a Discrete Abelian Group


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let X be a countable discrete Abelian group containing no elements of order 2. Let α be an automorphism of X. Let ξ1 and ξ2 be independent random variables with values in the group X and distributions μ1 and μ2. The main result of the article is the following statement. The symmetry of the conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 implies that μj are shifts of the Haar distribution of a finite subgroup of X if and only if α satisfies the condition Ker(I + α)= {0}. Some generalisations of this theorem are also proved.

About the authors

G. M. Feldman

Verkin Institute for Low Temperature Physics and Engineering

Author for correspondence.
Email: feldman@ilt.kharkov.ua
Ukraine, Kharkov, 61103

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.