On Heyde’s Theorem for Probability Distributions on a Discrete Abelian Group


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let X be a countable discrete Abelian group containing no elements of order 2. Let α be an automorphism of X. Let ξ1 and ξ2 be independent random variables with values in the group X and distributions μ1 and μ2. The main result of the article is the following statement. The symmetry of the conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 implies that μj are shifts of the Haar distribution of a finite subgroup of X if and only if α satisfies the condition Ker(I + α)= {0}. Some generalisations of this theorem are also proved.

Sobre autores

G. Feldman

Verkin Institute for Low Temperature Physics and Engineering

Autor responsável pela correspondência
Email: feldman@ilt.kharkov.ua
Ucrânia, Kharkov, 61103

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018