Using Reinforcement Learning in the Algorithmic Trading Problem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract—The development of reinforced learning methods has extended application to many areas including algorithmic trading. In this paper trading on the stock exchange is interpreted into a game with a Markov property consisting of states, actions, and rewards. A system for trading the fixed volume of a financial instrument is proposed and experimentally tested; this is based on the asynchronous advantage actor-critic method with the use of several neural network architectures. The application of recurrent layers in this approach is investigated. The experiments were performed on real anonymized data. The best architecture demonstrated a trading strategy for the RTS Index futures (MOEX:RTSI) with a profitability of 66% per annum accounting for commission. The project source code is available via the following link: http://github.com/evgps/a3c_trading.

Авторлар туралы

E. Ponomarev

Skolkovo Institute of Science and Technology

Хат алмасуға жауапты Автор.
Email: Evgenii.Ponomarev@skoltech.ru
Ресей, Moscow

I. Oseledets

Skolkovo Institute of Science and Technology; Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Email: Evgenii.Ponomarev@skoltech.ru
Ресей, Moscow; Moscow

A. Cichocki

Skolkovo Institute of Science and Technology

Email: Evgenii.Ponomarev@skoltech.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019