Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of minimization of the decoder error probability is considered for shortened codes of dimension 2m with distance 4 and 6. We prove that shortened Panchenko codes with distance 4 achieve the minimal probability of decoder error under special form of shortening. This shows that Hamming codes are not the best. In the paper, the rules for shortening Panchenko codes are defined and a combinatorial method to minimize the number of words of weight 4 and 5 is developed. There are obtained exact lower bounds on the probability of decoder error and the full solution of the problem of minimization of the decoder error probability for [39,32,4] and [72,64,4] codes. For shortened BCH codes with distance 6, upper and lower bounds on the number of minimal weight codewords are derived. There are constructed [45,32,6] and [79,64,6] BCH codes with the number of weight 6 codewords close to the lower bound and the decoder error probabilities are calculated for these codes. The results are intended for use in memory devices.

Авторлар туралы

V. Afanassiev

Kharkevich Institute for Information Transmission Problems

Хат алмасуға жауапты Автор.
Email: afanv@iitp.ru
Ресей, Moscow, 127051

A. Davydov

Kharkevich Institute for Information Transmission Problems

Email: afanv@iitp.ru
Ресей, Moscow, 127051

D. Zigangirov

Kharkevich Institute for Information Transmission Problems

Email: afanv@iitp.ru
Ресей, Moscow, 127051

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2016