Predictive Multi-user Dynamic Spectrum Allocation Using Hidden Semi-Markov Model


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For wideband Cognitive Radio (CR) devices, the availability of primary user (PU) activity prediction model can save sensing energy and time, track spectrum variations, reduce switching overhead, improve spectrum usage and lower interference to PU. Using Universal Software Radio Peripheral (USRP) generated data, this paper has verified the superiority of Hidden Semi-Markov model (HSMM) over the conventional HMM in learning and predicting temporal correlations in PU spectral activity under non-geometric distribution of state durations. Numerical simulations further show that in a coordinated multi-SU/PU scenario, compared to the traditional random Carrier Sense Multiple Access (CSMA), the proposed HSMM-dynamic spectrum allocation (DSA) protocol significantly reduces aggregate interference to PU. Depending on the number of SU, there exists a trade-off between “interference-free coexistence with PU” and “self-existence of a large number of SU”. This problem is addressed further by statistically modeling probability of free channels and using it to optimize the number of SU that can be allocated. The proposed scheme outperforms the conventional sensing based dynamic spectrum allocation (DSA) in terms of reduced PU interference, lower spectrum handoff requirements and higher spectrum utilization efficiency. The predictive optimized HSMM-DSA can be used as an additional layer of intelligence for any CR device for efficient spectrum sharing.

Об авторах

S. Koley

Department of Electronics and Communication Engineering, DIT University

Автор, ответственный за переписку.
Email: santasrikoley27@gmail.com
Индия, Dehradun, Uttarakhand, 248009

D. Bepari

Department of Electronics and Communication Engineering, Vaagdevi College of Engineering

Email: santasrikoley27@gmail.com
Индия, Warangal, Telangana, 506005

D. Mitra

Indian Institute of Technology (Indian School of Mines

Email: santasrikoley27@gmail.com
Индия, Jharkhand), , Dhanbad, 82600

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2018

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».