


Vol 58, No 3 (2016)
- Year: 2016
- Articles: 30
- URL: https://journals.rcsi.science/1063-7834/issue/view/12320
Reviews
Diffusion model of the formation of growth microdefects: A new approach to defect formation in crystals (Review)
Abstract
Theoretical studies of defect formation in semiconductor silicon play an important role in the creation of breakthrough ideas for next-generation technologies. A brief comparative analysis of modern theoretical approaches to the description of interaction of point defects and formation of the initial defect structure of dislocation-free silicon single crystals has been carried out. Foundations of the diffusion model of the formation of structural imperfections during the silicon growth have been presented. It has been shown that the diffusion model is based on high-temperature precipitation of impurities. The model of high-temperature precipitation of impurities describes processes of nucleation, growth, and coalescence of impurities during cooling of a crystal from 1683 to 300 K. It has been demonstrated that the diffusion model of defect formation provides a unified approach to the formation of a defect structure beginning with the crystal growth to the production of devices. The possibilities of using the diffusion model of defect formation for other semiconductor crystals and metals have been discussed. It has been shown that the diffusion model of defect formation is a platform for multifunctional solution of many key problems in modern solid state physics. Fundamentals of practical application of the diffusion model for engineering of defects in crystals with modern information technologies have been considered. An algorithm has been proposed for the calculation and analysis of a defect structure of crystals.



Metals
Electronic structure of the NpMT5 (M = Fe, Co, Ni; T = Ga, In) series of neptunium compounds
Abstract
Evolution of the electronic structure of the NpMGa5 (M = Fe, Co, Ni) series of neptunium compounds, whose crystal structure is similar to that of the known family of Pu115 superconductors, was studied by the LDA + U + SO method. The calculations took into account both the strong electron correlations and the spin‒orbit coupling in the 5f shell of neptunium. For the first time, the electronic structure was calculated for a hypothetical series of compounds in which gallium is replaced with indium. Parameters of the crystal structure of the given series were obtained using the relationship between the parameters of the crystal structure of the earlier-studied compounds PuCoGa5 and PuCoIn5. The analysis of the electronic structure and characteristics of neptunium ions calculated in the framework of the LDA + U + SO method showed that the neptunium ions in NpMIn5 with M = Fe, Co, and Ni should have an electron configuration closer to f4, but a spin and magnetic characteristics close to those in NpMGa5.



Logarithmic temperature dependence of electrical resistivity of (Co41Fe39B20)x(Al–O)100 – x nanocomposites
Abstract
The temperature dependence of the electrical conductivity σ(T) of (Co41Fe39B20)x(Al–O)100–x of nanocomposite films for different concentrations x of amorphous ferromagnetic metal (56 > x > 30) has been studied in the temperature range of 4.2–300 K. It has been shown that, for concentrations in the interval 56 > x > 49, the conductivity obeys the logarithmic law σ(T) = A(1 + αlnT), where A and α depend on the concentration. According to the theory developed by Efetov et al., this logarithmic dependence is connected with specificities of the Coulomb interaction in nanogranulated alloys on the intergranule tunneling in the transient region of concentrations from metallic conduction to the dielectric regime. The comparison of the theory with the experiment has revealed only qualitative agreement. The reasons of the quantitative disagreement have been discussed. The resistivity of samples with the concentrations lying in the range 49 > x > 30 obeys the 1/2 power law.



Superconductivity
Local features of the crystal structure of superconducting iron chalcogenides Fe(TeSe)1 – δ
Abstract
The local crystal structure of superconducting powders of iron chalcogenides FeTexSe1–x (x = 0.1, 0.22, 0.49, 0.8, 0.9) prepared by dry synthesis (without mineralizer) has been studied by EXAFS spectroscopy above the K Se and K Fe absorption edges in the temperature range of 80–300 K. The dependences of Se–Fe, Fe–Te, and Fe–Fe interatomic bond lengths and degrees of their local disordering (Debye–Waller factors) on the tellurium content and temperature have been obtained. Einstein temperatures characterizing the stiffness of each bond have been determined. The correlation of the Se–Fe bond stiffness with the dependence of the critical temperature of the superconducting transition Tc on the composition of the samples under study have been established, which indicates the specific role of the Se–Fe bond in the superconducting state formation in iron chalcogenides FeTexSe1–x.



Size effects in electrical and magnetic properties of quasi-one-dimensional tin wires in asbestos
Abstract
Bulk composites have been prepared based on one-dimensional fibers of natural chrisothil-asbestos with various internal diameters (d = 6–2.5 nm) filled with tin. The electrical and magnetic properties of quasi-one-dimensional Sn wires have been studied at low temperatures. The electrical properties have been measured at T = 300 K at a pressure P = 10 kbar. It has been found that the superconducting (SC) characteristics of the nanocomposites (critical temperature Tc and critical magnetic field Hc) increase as the Sn filament diameter decreases. The temperature spreading of the resistive SC transition also increases as the Sn filament diameter decreases, which is explained by the SC order parameter fluctuations. The size effects (the increase in critical temperature Tc and transition width ΔTc) in Sn nanofilaments are well described by the independent Aslamazov–Larkin and Langer–Ambegaokara fluctuation theories, which makes it possible to find the dependence of Tc of the diffuse SC transition on the nanowire diameter. Using the temperature and magnetic-field dependences of the magnetic moment M(T, H), it has been found that the superconductor–normal metal phase diagram of the Sn–asbestos nanocomposite has a wider region of the SC state in T and H as compared to the data for bulk Sn. The magnetic properties of chrisotil-asbestos fibers unfilled with Sn have been studied. It has been found that the Curie law is fulfilled and that the superparamagnetism is absent in such samples. The obtained results indicate the absence of magnetically ordered impurities (magnetite) in the chrisotil-asbestos matrix, which allowed one to not consider the problem of the interaction of the magnetic subsystem of the asbestos matrix and the superconducting subsystem of Sn nanowires.



Semiconductors
Analysis of the electronic structure of crystals through band structure unfolding
Abstract
In this work, we consider an alternative implementation of the band structure unfolding method within the framework of the density functional theory, which combines the advantages of the basis of localized functions and plane waves. This approach has been used to analyze the electronic structure of the ordered CuClxBr1–x copper halide alloys and F0 center in MgO that enables us to reveal qualitatively the features remaining hidden when using the standard supercell method, because of the complex band structure of systems with defects.



Dielectrics
Study of the effects of hydroxyapatite nanocrystal codoping by pulsed electron paramagnetic resonance methods
Abstract
The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during “wet” synthesis by CO32− carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin–spin relaxation) of the NO32− nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion–cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.



Antisite defects and valence state of vanadium in Na3V2(PO4)3
Abstract
Electron paramagnetic resonance (EPR) studies have been performed with the aim of determining the valence state and local crystal structure of the nearest environment of vanadium ions in the initial, charged, and discharged samples of the cathode material NaxV2(PO4)3 (1 ≤ x ≤ 3). It has been found that the charged sample (x = 1) is characterized by an intense signal corresponding to V4+ ions located in a highly distorted octahedral crystal field. An EPR signal with the g-factor close to the g-factor of the V4+ ion has also been observed in the initial sample (x = 3), where the intensity of the resonance signal is one order of magnitude lower than that in the charged sample. It has been revealed that the resonance signal under consideration is associated with the formation of antisite defects when a part of vanadium ions are located in sites of sodium ions. It has also been found that the intensity of this signal increases after a complete charge–discharge cycle (x = 3).



Heat capacity and thermodynamic properties of HoMnO3 in the range of 364–1046 K
Abstract
The temperature dependence of the molar heat capacity of HoMnO3 has been measured by differential scanning calorimetry. The experimental data have been used to calculate the thermodynamic properties of the oxide compound (changes in the enthalpy H°(T)–H°(364 K), entropy S°(T)–S°(364 K), and reduced Gibbs energy Φ°(T)). The data on the heat capacity of HoMnO3 have been generalized in the range of 40–1000 K.



Magnetism
Three-dimensional simulation of irregular dynamics of topological solitons in moving magnetic domain walls
Abstract
A three-dimensional computer simulation of dynamic processes occurring in a domain wall moving in a soft-magnetic uniaxial film with in-plane anisotropy has been performed based on the micromagnetic approach. It has been shown that the domain wall motion is accompanied by topological transformations of the magnetization distribution, or, more specifically, by “fast” processes associated with the creation and annihilation of vortices, antivortices, and singular (Bloch) points. The method used for visualizing the topological structure of magnetization distributions is based on the numerical determination of topological charges of two types by means of the integration over the contours and surfaces with variable geometry. The obtained data indicate that the choice of the initial configuration predetermines the dynamic scenario of topological transformations.



Solitons of electric polarization in multiferroics
Abstract
Complete analysis of the properties of breathers in spiral multiferroic structures in the sine-Gordon model has been presented. The methods of the excitation and detection of the breathers in the external electric and magnetic fields have been discussed.



Magnetostatic mechanism for control of chirality of magnetization distributions
Abstract
It has been shown that the magnetostatic interaction in an inhomogeneous medium leads to the removal of the chiral degeneracy of magnetic distributions. Noncollinear states of two magnetic dipoles and a helical cycloid placed over a superconducting half-space have been considered as examples. The influence of a finite penetration depth of the magnetic field on the efficiency of removal of the chiral degeneracy has been studied in the framework of the London approximation.



Magnetoelectric effect in layered disk-shaped magnetostrictive–piezoelectric structures: Theory and experiment
Abstract
Theoretical and experimental studies of the magnetoelectric effect in a disk-shaped magnetostrictive–piezoelectric structure in the electromechanical resonance region are presented. An expression for the magnetoelectric voltage coefficient is derived based on the simultaneous solution of elastodynamic and electrostatic equations separately for magnetostrictive and piezoelectric layers. The conditions at the interface were taken into account based on the premise that the interaction between layers is implemented by shear. It is shown that the inhomogeneity of the voltage and strain distribution over the sample thickness, caused by the interface, leads to a significant contribution to the effect in the case of thick layers. The theoretical and experimental dependences of the frequency characteristic of the effect are presented for the permendur–lead zirconate-titanate–permendur structure. The theoretical calculations are in good agreement with experimental data.



Low-temperature anomaly of the magnetization in alloys (Pr,Dy,M)2(Fe,Co)14B (M = Gd, Sm, Nd)
Abstract
It has been found that temperature dependences of the saturation magnetization of sintered hard magnetic (Pr,Dy,M)2(Fe,Co)14B (M = Gd, Sm, Nd) alloys demonstrate an increase at a temperature lower than a critical temperature (150 K for Sm and Nd and 70 K for Gd). An additive of copper does not influence the critical temperature. It has been assumed that there is a low-temperature phase in which cobalt is replaced with boron that diffuses from the (Pr,Dy,Gd)(Fe,Co)4B phase to the near-surface region of grains of the main magnetic (Pr,Dy,Gd)2(Fe,Co)14B phase.



Signs of high-temperature superconductivity in frustrated manganites La1 – ySmyMnO3 + δ (y = 0.85, 1)
Abstract
The characteristics signs of the coexistence of nanoscale superconductivity and fluctuating antiferromagnetic state of the spin-liquid type have been revealed for the first time in frustrated manganites La1‒ySmyMnO3 + δ (δ ~ 0.1, y = 0.85, 1.0) in the form of macroscopic quantization of magnetic properties in weak magnetic fields. A sharp decrease and oscillations of close-in-magnitude critical temperatures of transitions to fluctuating antiferromagnetic (TA) and superconducting (Tc0) states with an increase in the external magnetic field strength have been found. Quantum oscillations of the magnetization and magnetic susceptibility near the critical temperatures of fluctuating antiferromagnetic phase transitions of the A- and CE-types have been discovered and investigated in detail. It has been shown that the studied samples exhibit properties of a multicomponent composite in which at temperatures T < 60 K in weak magnetic fields, there coexist fluctuating charge and antiferromagnetic correlations of the A- and CE-types with properties of the spin-liquid state and a small fraction of the superconducting phase in the form of individual and Josephsontunnel- junction-coupled superconducting loops with low critical currents. It has been assumed that, in samples with samarium concentrations y ≥ 0.8 at temperatures below 60 K, there is a new inhomogeneous state of doped manganites of the magneto-electronic liquid crystal type with strong quantum fluctuations of the magnetic and electronic order parameters, which are similar to electronic liquid crystals in lightly doped high-temperature superconducting cuprates.



Mössbauer investigations of Fe and Fe3O4 magnetic nanoparticles for hyperthermia applications
Abstract
Magnetic nanoparticles of magnetite Fe3O4 and Fe synthesized by physical vapor deposition with a fast highly effective method using a solar energy have been studied. Targets have been prepared from tablets pressed from Fe3O4 or Fe powders. Relationships between the structure of nanoparticles and their magnetic properties have been investigated in order to understand principles of the control of the parameters of magnetic nanoparticles. Mössbauer investigations have revealed that the nanoparticles synthesized from tablets of both pure iron and Fe3O4 consist of two phases: pure iron and iron oxides (γ-Fe2O3 and Fe3O4). The high iron oxidability suggests that the synthesized nanoparticles have a core/shell structure, where the core is pure iron and the shell is an oxidized iron layer. Magnetite nanoparticles synthesized at a pressure of 80 Torr have the best parameters for hyperthermia due to their core/shell structure and core-to-shell volume ratio.



Ferroelectricity
Twist of rhombohedra, spin helix, and “giant” polarization in a CaMn7O12 multiferroic crystal
Abstract
A qualitative assessment of axial vector Γz in invariant Pz(McurlM)Γz proposed earlier for the description of the thermodynamic potential of a CaMn7O12 multiferroic material with electric polarization Pz along the z axis of the helix of magnetic moments M has been performed based on the fan-shaped structure of the atomic cell of the crystal. The dependence of Γz on the permanent dipole moment of MnO6 octahedra (rhombohedra), which are inevitably distorted in the paraelectric phase due to the structural transformation, on the mechanical stiffness of the crystal lattice, and on the projected area of the cross section of rhombohedra with bevels undergoing a shift has been determined from dimensional considerations. It has been demonstrated how these factors contribute to the twist of rhombohedra.



Dielectric response of SrTiO3–SrMg1/3Nb2/3O3 solid solutions in the terahertz–infrared range
Abstract
The reflection and transmission spectra of ceramic samples of SrTiO3–SrMg1/3Nb2/3O3 solid solutions have been measured in the frequency range of 5–5000 cm–1 and in the temperature range of 5–370 K. Based on these spectra, the spectra of the real ε'(ν) and imaginary ε''(ν) parts of the complex permittivity ε*(ν) have been simulated by the method of dispersion analysis. It has been found that the temperature evolution of the dielectric constant is entirely determined by the behavior of the soft mode.



Formation of a cluster structure in the PbZr1 – xTixO3 system
Abstract
Microdeformations of the crystal lattices in the phombohedral and tetragonal regions of the PbZr1–xTixO3 phase diagram have been calculated and their dependences on the titanium concentration have been constructed. Based on an analysis of these dependences, it has been concluded that tetragonal-phase clusters form in the range 0.11< x < 0.12 and rhombohedral-phase clusters form in the range 0.725 < x < 0.750.



Mechanical Properties, Physics of Strength, and Plasticity
Effect of magnetic field on the polarization of LiF crystals during microindentation
Abstract
The polarization and depolarization processes in a LiF crystal during indentation after exposure to a dc magnetic field (B = 0.9 T, t = 30 min) have been studied. It has been shown that the potential difference appearing due to movement of charged dislocations in the exposed crystal increases more than two-fold as compared to the initial sample, and the subsequent charge equilibrium in the samples is established approximately 1.5 times faster. These developments demonstrate significant increase in the concentration of free cation vacancies due to action of a magnetic field.



On wave and rheidity properties of the Earth’s crust
Abstract
The properties of the Earth’s solid crust have been studied on the assumption that this crust has a block structure. According to the rotation model, the motion of such a medium (geomedium) follows the angular momentum conservation law and can be described in the scope of the classical elasticity theory with a symmetric stress tensor. A geomedium motion is characterized by two types of rotation waves with shortand long-range actions. The first type includes slow solitons with velocities of 0 ≤ Vsol ≤ c0, max = 1–10 cm s–1; the second type, fast excitons with V0 ≤ Vex ≤ VS–VP. The exciton minimal velocity (V0 = 0) depends on the energy of the collective excitation of all seismically active belt blocks proportional to the Earth’s pole vibration frequency (the Chandler vibration frequency). The exciton maximal velocity depends on the velocities of S (VS ≈ 4 km s–1) and/or P (VP ≈ 8 km s–1) seismic (acoustic) waves. According to the rotation model, a geomedium is characterized by the property physically close to the corpuscular–wave interaction between blocks that compose this medium. The possible collective wave motion of geomedium blocks can be responsible for the geomedium rheidity property, i.e., a superplastic volume flow. A superplastic motion of a quantum fluid can be the physical analog of the geomedium rheid motion.



Nucleation of deformation twins on gliding grain-boundary dislocations in nanomaterials
Abstract
A new micromechanism of nucleating deformation twins in nanocrystalline and ultrafine-grained materials under action of severe mechanical stresses has been proposed and theoretically described. The mechanism is a subsequent splitting of grain-boundary dislocations into lattice partial and sessile grain-boundary dislocations. Ensembles of gliding partial dislocation forms deformation twins. The energy characteristics of this process are calculated. The nucleation of the twins is shown to be energetically profitable and can be athermic (without an energy barrier) under conditions of severe mechanical stress. The dependence of a critical stress at which the barrier-less nucleation of twins took place on the widths of these twins is calculated.



Optical Properties
Spectral characteristics and energy transfer from Ce3+ to Tb3+ in compounds Lu1 – x – yCexTbyBO3
Abstract
The structure, IR absorption spectra, morphology, and spectral characteristics of compounds Lu1 – x – yCexTbyBO3 have been investigated. It has been shown that the Tb3+ luminescence excitation spectrum of the Lu1 – x – yCexTbyBO3 compounds is dominated by a broad band coinciding with the excitation band of Ce3+ ions, which clearly indicates energy transfer from the Ce3+ ions to the Tb3+ ions. The spectral position of this band depends on the structural state of the sample: in the structures of calcite and vaterite, the band has maxima at ~339 and ~367 nm, respectively. By varying the ratio between the calcite and vaterite phases in the sample, it is possible to purposefully change the Tb3+ luminescence excitation spectrum, which is important for the optimization of the spectral characteristics of Lu1 – x – yCexTbyBO3 when it is used in light-emitting diode sources. An estimate has been obtained for the maximum distance between Ce3+ and Tb3+ ions, which corresponds to electronic excitation energy transfer. It has been shown that the high intensity of Tb3+ luminescence in these compounds is due to the high efficiency of electronic excitation energy transfer from the Ce3+ ions to the Tb3+ ions as a result of the dipole–dipole interaction.



Optical surface polaritons of TM type at the nonlinear semiconductor–nanocomposite interface
Abstract
TM-polarized optical surface polaritons in a nonlinear semiconductor–nanocomposite guiding structure have been considered. The nanocomposite consists of alternating layers of bismuth-containing garnet ferrite (BIG, Lu3 – xBixFe5 – yGayO12) and gallium–gadolinium garnet (Gd3Ga5O12), and the semiconductor (n-InSb) has a cubic nonlinearity and is characterized by two components of the nonlinear susceptibility tensor. With allowance for the anisotropy of the optical properties of the nanocomposite, caused by the magnetization of the BIG layers, the dispersion relation has been obtained and analyzed and its solutions are shown to split into two pairs of high- and low-frequency branches. The influence of the electric field at the interface on the wave characteristics and the existence domains of nonlinear surface TM polaritons has been studied. By solving the inverse problem of finding the profile of the longitudinal electric component of the surface polariton, it has been found that the nonlinearity gives rise to soliton-like wave fields.



Investigation of halloysite nanotubes with deposited silver nanoparticles by methods of optical spectroscopy
Abstract
Halloysite nanotube composites covered by silver nanoparticles with the average diameters of 5 nm and 9 nm have been studied by methods of optical spectroscopy of reflectance/transmittance and Raman spectroscopy. It has been established that silver significantly increases the light absorption by nanocomposites in the range of 300 to 700 nm with a maximum near 400 nm, especially for the samples with the nanoparticle size of 9 nm, which is explained by plasmonic effects. The optical absorption increases also in the long-wavelength spectral range, which seems to be due to the localized electronic states in an alumosilicate halloysite matrix after deposition of nanoparticles. Raman spectra of nanocomposites reveal intense scattering peaks at the local phonons, whose intensities are maxima for the samples with the silver nanoparticle sizes of 9 nm, which can be caused by plasmonic enhancement of the light scattering efficiency. The results show the ability to use halloysite nanotube nanocomposites in photonics and biomedicine.



Phase Transitions
Specific features of electrical conductivity of the insulating phase of vanadium dioxide doped with niobium
Abstract
The electrical conductivity of V1 – xNbxO2 single crystals have been investigated over a wide temperature range covering regions of the existence of the metallic and insulating phases. It has been shown that, with an increase in the niobium concentration, the electrical conductivity of the metallic phase becomes below the Mott limit for the minimum metallic conductivity. Immediately after the metal–insulator transition, the electrical conductivity is determined by a large amount of free electrons that gradually localized with a decrease in the temperature. The temperature dependence of the electrical conductivity in the insulating phase of V1 – xNbxO2 has been explained in the framework of the hopping conductivity model that takes into account the effect of thermal vibrations of atoms on the resonance integral.



Low-Dimensional Systems
Equilibrium distribution of the wave energy in a carbyne chain
Abstract
The steady-state energy distribution of thermal vibrations at a given ambient temperature has been investigated based on a simple mathematical model that takes into account central and noncentral interactions between carbon atoms in a one-dimensional carbyne chain. The investigation has been performed using standard asymptotic methods of nonlinear dynamics in terms of the classical mechanics. In the first-order nonlinear approximation, there have been revealed resonant wave triads that are formed at a typical nonlinearity of the system under phase matching conditions. Each resonant triad consists of one longitudinal and two transverse vibration modes. In the general case, the chain is characterized by a superposition of similar resonant triplets of different spectral scales. It has been found that the energy equipartition of nonlinear stationary waves in the carbyne chain at a given temperature completely obeys the standard Rayleigh–Jeans law due to the proportional amplitude dispersion. The possibility of spontaneous formation of three-frequency envelope solitons in carbyne has been demonstrated. Heat in the form of such solitons can propagate in a chain of carbon atoms without diffusion, like localized waves.



Surface Physics and Thin Films
Galvanomagnetic properties of thin films of bismuth and bismuth–antimony alloys on substrates with different thermal expansions
Abstract
Temperature dependences of the galvanomagnetic properties of films of bismuth and Bi100 – xSbx (x ≤ 12) on substrates with different temperature expansion coefficients were studied in the temperature range of 77–300 K. The block films were prepared through thermal deposition, and single-crystal Bi100 – xSbx were grown by zone recrystallization under a coating. It was found that the temperature expansion coefficient of a substrate substantially influenced the galvanomagnetic properties of Bi and Bi100 – xSbx films. Using the experimental data, the change in the charge-carrier concentration in the Bi and Bi100 – xSbx films on different substrates at 77 K was estimated.



Epitaxial growth of cadmium sulfide films on silicon
Abstract
A 300-nm-thick cadmium sulfide epitaxial layer on silicon was grown for the first time. The grown was performed by the method of evaporation and condensation in a quasi-closed volume at a substrate temperature of 650°C and a growth time of 4 s. In order to avoid a chemical reaction between silicon and cadmium sulfide (at this temperature, the rate constant of the reaction is ~103) and to prevent etching of silicon by sulfur, a high-quality silicon carbide buffer layer ~100 nm thick was preliminarily synthesized by the substitution of atoms on the silicon surface. The ellipsometric, Raman, electron diffraction, and trace element analyses showed a high structural perfection of the CdS layer and the absence of a polycrystalline phase.



Graphenes
Ab initio simulation of gap discrete breathers in strained graphene
Abstract
The methods of the density functional theory were used for the first time for the simulation of discrete breathers in graphene. It is demonstrated that breathers can exist with frequencies lying in the gap of the phonon spectrum, induced by uniaxial tension of a monolayer graphene sheet in the “zigzag” direction (axis X), polarized in the “armchair” direction (axis Y). The found gap breathers are highly localized dynamic objects, the core of which is formed by two adjacent carbon atoms located on the Y axis. The atoms surrounding the core vibrate at much lower amplitudes along both the axes (X and Y). The dependence of the frequency of these breathers on amplitude is found, which shows a soft type of nonlinearity. No breathers of this type were detected in the gap induced by stretching along the Y axis. It is shown that the breather vibrations may be approximated by the Morse oscillators, the parameters of which are determined from ab initio calculations. The results are of fundamental importance, as molecular dynamics calculations based on empirical potentials cannot serve as a reliable proof of the existence of breathers in crystals.


