Wave Resonance in Media with Modular, Quadratic and Quadratically-Cubic Nonlinearities Described by Inhomogeneous Burgers-Type Equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The phenomenon of “wave resonance” which occurs at excitation of traveling waves in dissipative media possessing modular, quadratic and quadratically-cubic nonlinearities is studied. The mathematical model of this phenomenon is the inhomogeneous (or “forced”) equation of Burgers type. Such nonlinearities are of interest because the corresponding equations admit exact linearization and describe real physical objects. The presence of “accompanying sources” (traveling with the wave) on the right-hand side of the inhomogeneous equations ensures the inflow of energy into the wave, which thereafter spreads throughout the wave profile, flows to emerging shock fronts, and then dissipates due to linear and nonlinear losses. As an introduction, the phenomenon of wave resonance in ideal and dissipative media is described and physical examples are given. Exact expressions for nonlinear steady-state wave profiles are derived. Non-stationary processes of wave generation, spatial “beating” of amplitudes with different relationship between the speed of motion of the sources and the natural wave velocity in the medium are studied. Resonance curves are constructed that contain a nonlinear shift of the absolute maxima to the “supersonic” region. The features of the resonance in each of the three types of nonlinearity are discussed.

作者简介

O. Rudenko

Moscow State University; Blekinge Institute of Technology; Prokhorov General Physics Institute; Schmidt Institute of Physics of the Earth

编辑信件的主要联系方式.
Email: rudenko@acs366.phys.msu.ru
俄罗斯联邦, Moscow, 119991; Karlskrona; Moscow; Moscow

C. Hedberg

Blekinge Institute of Technology

Email: rudenko@acs366.phys.msu.ru
瑞典, Karlskrona

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018