Studies on Charge Carrier Transport in an Injection Laser with Frequency Modulation of the Optical Radiation


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

One of the promising approaches to solve the problem of increasing the efficiency for interelement connections consists in the use of integrated optical switching systems, whose main elements represent injection lasers with functionally integrated optical radiation modulators. Injection lasers make it possible to modulate the laser radiation by subpicosecond controlling pulses at a constant pumping current, as well as making it possible to implement the sources and modulators of optical radiation in a united AIIIBV nanoheterostructure with second-type heterojunctions. This work is devoted to the studies concerning the transport of charge carriers within a functionally integrated modulator laser with internal frequency modulation of the generated optical radiation using a proposed two-dimensional diffusion-drift model and a numerical simulation technique. The results of the numerical simulation of charge carrier transport in a modulator laser when the pumping current is switched on, as well as under pulsed variation of the controlling voltage, take the structural features, the transport effects, the mechanisms of stimulated and spontaneous radiative recombination, and the photon lifetime into account. It is shown that the maximum modulation frequency of laser radiation is determined by the subpicosecond time of the controlled spatial relocation of the charge-carrier density maxima in the quantum zones of the modulator laser, as well as by the photon lifetime in the laser resonator, and corresponds to the terahertz range. To increase the maximum modulation frequency, it is necessary to reduce the photon lifetime in the active zone of the modulator laser to values lower than 3 ps by changing the resonator’s parameters in a corresponding manner. The proposed model and the method of numerical simulation make it possible to optimize the parameters of a functionally integrated modulator laser, and to provide the required relationships between the maximum modulation frequency of the optical radiation, the modulation coefficient, and the density of the threshold pumping current.

Об авторах

B. Konoplev

Southern Federal University

Email: earyndin@sfedu.ru
Россия, Taganrog, 347928

E. Ryndin

Southern Federal University

Автор, ответственный за переписку.
Email: earyndin@sfedu.ru
Россия, Taganrog, 347928

I. Pisarenko

Southern Federal University

Email: earyndin@sfedu.ru
Россия, Taganrog, 347928

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».