Electrical Performance Improvement of Lead-Acid Battery under the Impact of Micro Carbon Additives


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The features and changes in the microstructure of the electrode material of the negative electrode of the lead–acid starter accumulator battery appearing on the addition of two different specimens of carbon carbon black and hybrid carbon, are investigated. The X-ray phase analysis and the scanning electron microscopy analysis are conducted. It is established that using carbon black or hybrid carbon as an additive to the material of the negative electrode influences its structure causing changes in the processes of its impregnation and formation. Based on the structural analysis, a qualitative description, according to which hybrid carbon increases the dispersity of the negative active mass and impedes the diffusion of sulfate-ions, is proposed. The standard tests were conducted by intensive cycling in the partial state of charge lead–acid starter batteries in the charge–discharge mode. The batteries were manufactured using negative plates with additives of technical or hybrid carbon. The influence of each type of carbon additive on the electrical characteristics of the starter batteries is determined. It is shown that the additive of hybrid carbon increases the service life of starter batteries under operation in the partial state of the charge. This additive increases the charge acceptance on average by 9% and the deep discharge stability of the battery. The capacity loss after deep discharge is less than 4.4% if hybrid carbon is used as an additive and 7.2% in the case of carbon black.

Sobre autores

A. Kuzmenko

Southwest State University

Autor responsável pela correspondência
Email: apk3527@mail.ru
Rússia, Kursk, 305040

E. Grechushnikov

Southwest State University

Email: apk3527@mail.ru
Rússia, Kursk, 305040

V. Kharseev

Southwest State University

Email: apk3527@mail.ru
Rússia, Kursk, 305040

A. Salnikov

Southwest State University

Email: apk3527@mail.ru
Rússia, Kursk, 305040


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies