Fabrication and Electrical Characteristics of Asymmetric Rings Made of HTS YBCO Films Obtained by Pulsed Laser Deposition


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

HTS YBCO films 200–400 nm thick are fabricated by pulsed laser deposition, both without filtration and in the regimes of velocity filtration of particles of an ablation plume. Using AFM and SEM, it is established that the size of large particles in the plane of films during deposition without filtration ranges from 60 to 1000 nm. After filtration, the maximum particle size in the film plane is less than 500 nm. Two types of irregularities are found on the surface after deposition: irregularities obtained from rounded particles and irregularities from faceted crystals. Using the methods of electron lithography and etching with argon ions through a mask, micro- and nanostructures are fabricated from HTS films. A correlation has been found between the characteristic dimensions of the irregularities on the surface of the films and the available lateral resolution of the microstructures obtained. For structures from HTS films that are asymmetric rings with a characteristic line width of 800 nm, the temperature dependences of the superconducting transition are determined and their asymmetric I–V characteristics are observed.

Sobre autores

A. Il’in

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ilin@iptm.ru
Rússia, Chernogolovka, Moscow oblast, 142432

A. Ivanov

National Research Nuclear University MEPhI

Email: ilin@iptm.ru
Rússia, Moscow, 115409

O. Trofimov

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ilin@iptm.ru
Rússia, Chernogolovka, Moscow oblast, 142432

A. Firsov

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ilin@iptm.ru
Rússia, Chernogolovka, Moscow oblast, 142432

A. Nikulov

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ilin@iptm.ru
Rússia, Chernogolovka, Moscow oblast, 142432

A. Zotov

Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ilin@iptm.ru
Rússia, Chernogolovka, Moscow oblast, 142432


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies