Two-Sided Estimates of Fourier Sums Lebesgue Functions with Respect to Polynomials Orthogonal on Nonuniform Grids


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let Ω = {t0, t1, …, tN} and ΩN = {x0, x1, …, xN–1}, where xj = (tj + tj + 1)/2, j = 0, 1, …, N–1 be arbitrary systems of distinct points of the segment [–1, 1]. For each function f(x) continuous on the segment [–1, 1], we construct discrete Fourier sums Sn, N( f, x) with respect to the system of polynomials {k,N(x)}k=0N–1, forming an orthonormal system on nonuniform point systems ΩN consisting of finite number N of points from the segment [–1, 1] with weight Δtj = tj + 1tj. We find the growth order for the Lebesgue function Ln,N (x) of the considered partial discrete Fourier sums Sn,N ( f, x) as n = O(δN−2/7), δN = max0≤ jN−1 Δtj More exactly, we have a two-sided pointwise estimate for the Lebesgue function Ln, N(x), depending on n and the position of the point x from [–1, 1].

Sobre autores

A. Nurmagomedov

Dzhambulatov Dagestan State Agrarian University, Makhachkala

Autor responsável pela correspondência
Email: alimn@mail.ru
Rússia, 367032, Dagestan

N. Rasulov

Dzhambulatov Dagestan State Agrarian University, Makhachkala

Email: alimn@mail.ru
Rússia, 367032, Dagestan

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018