Two-Sided Estimates of Fourier Sums Lebesgue Functions with Respect to Polynomials Orthogonal on Nonuniform Grids


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let Ω = {t0, t1, …, tN} and ΩN = {x0, x1, …, xN–1}, where xj = (tj + tj + 1)/2, j = 0, 1, …, N–1 be arbitrary systems of distinct points of the segment [–1, 1]. For each function f(x) continuous on the segment [–1, 1], we construct discrete Fourier sums Sn, N( f, x) with respect to the system of polynomials {k,N(x)}k=0N–1, forming an orthonormal system on nonuniform point systems ΩN consisting of finite number N of points from the segment [–1, 1] with weight Δtj = tj + 1tj. We find the growth order for the Lebesgue function Ln,N (x) of the considered partial discrete Fourier sums Sn,N ( f, x) as n = O(δN−2/7), δN = max0≤ jN−1 Δtj More exactly, we have a two-sided pointwise estimate for the Lebesgue function Ln, N(x), depending on n and the position of the point x from [–1, 1].

Авторлар туралы

A. Nurmagomedov

Dzhambulatov Dagestan State Agrarian University, Makhachkala

Хат алмасуға жауапты Автор.
Email: alimn@mail.ru
Ресей, 367032, Dagestan

N. Rasulov

Dzhambulatov Dagestan State Agrarian University, Makhachkala

Email: alimn@mail.ru
Ресей, 367032, Dagestan

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2018