Two-Sided Estimates of Fourier Sums Lebesgue Functions with Respect to Polynomials Orthogonal on Nonuniform Grids


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let Ω = {t0, t1, …, tN} and ΩN = {x0, x1, …, xN–1}, where xj = (tj + tj + 1)/2, j = 0, 1, …, N–1 be arbitrary systems of distinct points of the segment [–1, 1]. For each function f(x) continuous on the segment [–1, 1], we construct discrete Fourier sums Sn, N( f, x) with respect to the system of polynomials {k,N(x)}k=0N–1, forming an orthonormal system on nonuniform point systems ΩN consisting of finite number N of points from the segment [–1, 1] with weight Δtj = tj + 1tj. We find the growth order for the Lebesgue function Ln,N (x) of the considered partial discrete Fourier sums Sn,N ( f, x) as n = O(δN−2/7), δN = max0≤ jN−1 Δtj More exactly, we have a two-sided pointwise estimate for the Lebesgue function Ln, N(x), depending on n and the position of the point x from [–1, 1].

作者简介

A. Nurmagomedov

Dzhambulatov Dagestan State Agrarian University, Makhachkala

编辑信件的主要联系方式.
Email: alimn@mail.ru
俄罗斯联邦, 367032, Dagestan

N. Rasulov

Dzhambulatov Dagestan State Agrarian University, Makhachkala

Email: alimn@mail.ru
俄罗斯联邦, 367032, Dagestan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018